TRANSITIONING TO RISK-INFORMED DESIGNS FOR DAMS AND LEVEES

Nate Snorteland, P.E. Director, Risk Management Center U.S. Army Corps of Engineers 12596 W Bayaud Ave, Suite 400 Lakewood, CO 80228

E: <u>nathan.j.snorteland@usace.army.mil</u> O: 303-963-4573

US Army Corps of Engineers Risk Management Center MANY TO A DE DALO TEND

OUTLINE

2 US Army Corps of Engineers Risk Management Cer

- USACE
- Background
- Levee Design Manual 3 Problems
- Example Moose Creek
- Example Herbert Hoover Dike

CORPS OF ENGINEERS

Military Programs

- Military Construction
- Base Operations
- Environmental Support
- Geospatial Engineering

Homeland Security

- Critical Infrastructure
 Protection
- The Infrastructure Security
 Partnership
- Contingency and Disaster
 Operations

Interagency

Support

- DOD
- FederalState
- State
 Local
- Local
 International

Research &

Development

- Military Engineering
- Terrain & Geospatial
- Structures

Civil Wor

- Environment
- Water Resources

- Navigation, Hydropower
- Flood control, Shore Protection
- Water Supply, Regulatory
- Recreation, Disaster Response
- Environmental Restoration

Estate

Acquire, Manage & Dispose

- DOD Recruiting Facilities
- Contingency Operations

USACE INFRASTRUCTURE

Dams

715 Dams
80% Earthen and 20% Concrete Gravity on Improved Foundations
PAR of +12.8M
Property at risk = +1T
Total length of 267 miles
Average age = +55
Pass extreme flows in controlled manner

Levees

□2,500 levee segments

- □95% Earthen, 5% Concrete Floodwall on
 - unimproved foundations
- \Box PAR of +9.5M \Box Property at risk = +\$1
- □Property at risk = +\$1.3T
- □Total length of 14,700 miles
- □Average age = +55
- □Pass extreme flows in uncontrolled manner

BACKGROUND

HISTORY – WATER RETAINING STRUCTURES (DAMS AND LEVEES)

- 8 US Army Corps of Engineers Risk Management Cen
- Engineering organizations, private consultants, and government agencies have been using regulations, manuals, and guidance published by the Corps of Engineers for nearly 75 years
- The guidance currently published aggregates many of the lessons learned by the profession from their experience observing the performance of dams and levees worldwide
- The approach taken by our predecessors, to pass that knowledge to future generations, has led to an improvement in the design and construction processes over the course of the last 75 years

THE UNDERLYING ISSUE

FOUNDATIONS, FILTERS, AND INTERNAL EROSION

CONDUITS AND EARTHQUAKES

1927 LEVEE PERFORMANCE

LEVEE DESIGNS 1927 – 1970'S

- Examinations of levee failures led directly to levee design standards
- Geomorphology studies
- Much R&D at the Waterways Experiment Station
- Stability
- Underseepage
- Focused on Lower Mississippi

H.H.H

16

US Army Corps of Engineers Risk Management Center

Ĩ

DESIRE TO REVISE LEVEE DESIGN MANUAL

3 Significant Problems Identified

PROBLEM NO. 1

Not every levee conforms to levee geometry in the lower Mississippi

"It's great if you are from the Lower Mississippi, but there's nothing about the types of designs we do here in

"

FLOOD FIGHTING SAND LEVEES

2011MISSOURI RIVER PERFORMANCE HISTORY

- Factors of safety called out
- Traditional dimensions discussed but requirements not set
- Past performance and engineering judgment are paramount

PROBLEM NO. 2

We don't have an analytical model for every failure mode

MARCHAND LEVEE FAILURE 1983

FLOW SLIDES IN SAND

26 US Army Corps of Engineers Risk Management Cen

26/7

INTERNAL EROSION

PROBLEM NO. 3

We don't have a model that incorporates intervention

FLOOD FIGHTING

Levee did not fail, but internal erosion pipes projecting towards the river found in 2012.

Example Flood Fighting Evaluation

"More than expected and, but for flood fighting, levee would have failed"

Ensley Berm, Memphis 2011

FLOOD FIGHTING

Possibly due to defects in riverside cap - fourth pipe formed and breached on June 13, 2011.

Example Flood Fighting Evaluation

"Flood fighting occurred but levee failed"

L-575 Breach, NW Atchison County Levee District, Hamburg Iowa 2011

GENERAL PROCESS AND EXAMPLES

GEOLOGY TIP: THERE ARE SO MANY MICROPLATES AND AGES THAT NO ONE REMEMBERS THEM ALL, SO IN A PINCH YOU CAN BLUFF WITH DOG BREEDS.

GENERAL PROCESS

- 1. Have a baseline Potential Failure Mode Assessment and risk assessment
- 2. Design project using traditional factors of safety
- 3. Calculate the risk for that design
- 4. Evaluate the tolerability of the design
- 5. Modify the design
- 6. Calculate the risk for that design
- 7. Evaluate the tolerability of the design

MOOSE CREEK DAM

MOOSE CREEK DAM

MOOSE CREEK DAM – ALTERNATIVE

US Army Corps of Engineers® Risk Management Cent

Plan F9:

- Centerline Cutoff Wall: Reaches 4, 5, 6, 8, 9
- APF (FWAC): 2.37E-05 / APF (F9): 1.76E-06
- AALL (FWAC): 5.84E-06 / AALL (F9): 1.11E-04
- Less costly than Plan F10 : \$102.6 million
- Cost to Save a Statistical Life, and Incremental Average Annual Life
 Loss versus Incremental Cost is lower than F10.
- Reduces risk around 1 order of magnitude below Tolerable Risk Guidelines.
- Addresses Flaw (biggest risk driver). The Cutoff Wall will interrupt and discontinue the flaw.
- More Efficient than F10.
- · Minimal environmental impacts.
- · Meets Planning Objectives (TRG) with High Level of certainty.
- · Less uncertainty with untested embankment performance.

Uncertainty Without Considering Intervention

	APF	AALL	N
Upper Limit	2.87E-05	1.63E-03	226
Expected Value	1.76E-06	1.11E-04	63
Lower Limit	3.57E-07	1.56E-05	7

Simulation Summary

0.22%	Above Tolerable Risk Guidelines
99.78%	Below Tolerable Risk Guidelines
0.00%	Low Probability - High Consequence

MOOSE CREEK DAM - HEAVE

- Calculations used to prevent heave of coarse grained soil into a pipe at the bottom of the flaw material.
- Conservative, assumes there is no embankment or foundation material downstream of wall to exit.

<u>Results</u>

- Wall 10 feet below flaw had an unacceptable factor of safety below 1.
- 15 foot wall had no factor of safety below 1.
- Reach 3 transition from 21 feet to initial depth of 56 feet has a low factor of safety.
- Control Works shows inaccurate factor of safety due to excavation.

MOOSE CREEK DAM – RISK REDUCTION

Plan F9 (Jan 2017)

Plan F9 (Jan 2018)

40 US Army Corps of Engineers: Bisk Management Co

HERBERT HOOVER DIKE

HERBERT HOOVER DIKE

HERBERT HOOVER DIKE

HERBERT HOOVER DIKE – BACKGROUND

- 2001 2005
 - ✓ Did not meet exit gradient design criteria
 - \checkmark Designs formulated to meet criteria
 - ✓ Cutoff wall through CIZ A 200'/65 m deep
 - ✓ ~\$10M/mile = \$2.5 Billion
- 2006 New Guidance
 - ✓ Evaluate Risk
 - ✓ Formulate 2 alternatives
 - ✓ 1 Just to tolerable levels
 - \checkmark 2 Tolerable levels + 1 order of magnitude

44

ĬHĬ

HERBERT HOOVER DIKE – FAILURE MODE

45

ĬĸĬ

US Army Corps of Engineers

Risk Management Cent

HERBERT HOOVER DIKE – ALTERNATIVES

HERBERT HOOVER DIKE – EVALUATION

	Existing Condition ⁽³⁾	FWAC/IRRM Permanent ⁽³⁾	Alternative 1 (Societal Life Safety)	Alternative 2 (Societal, Individual and APF)	Alternative 3 (Societal, and APF with significant consequences)	Alternative 4 (Societal, Individual, APF and Essential Guidelines)
Segments Remediated	No A	ction	5-2 and 8	4 - 9	4 - 9 (southern)	4 - 9
Solution			Cutoff-Wall	Cutoff-Wall	Cutoff-Wall	Internal Drainage System
Project Performance						
Residual Annualized Probability of Failure (APF)	3.78E-03	3.78E-03	3.78E-03	1.10E-04	2.01E-04	8.34E-05
Residual Annualized Life Loss (ALL)	1.01E-03	1.66E-04	1.02E-04	6.05E-05	6.05E-05	5.95E-05
Individual Tolerable Risk	0.00238	0.00238	2.38E-03	6.78E-05	1.27E-04	5.01E-05
Costs						
Total Estimated Construction Cost	\$0	\$0	\$16,200,000	\$345,000,000	\$293,400,000	\$660,900,000
Change in Annual O&M	\$0	\$0	\$0	\$0	\$0	\$100,000
Annual Cost	\$0	\$0	\$530,000	\$11,300,000	\$9,610,000	\$21,750,000
Economic Impacts of a Breach						
31ft	\$2,415,764,000					
Direct Economic Impacts 25ft	\$1,453,393,000					
20ft	\$711,407,000					
Expected Annual Economic Impacts		1				
Annual Economic Damages	\$172,000	\$172,000	\$172,000	\$5,000	\$5,000	\$4,000
Costs/Benefits Analysis						
Net Economic Cost (Change in Annual Cost - Change Economic Damages)			\$530,000	\$11,133,000	\$9,443,000	\$21,582,000
Benefit Cost Ratio (BCR)			0.00	0.01	0.02	0.01
CSSL (Net Cost/Change in CSSL)			\$8,280,000,000	\$105,530,000,000	\$89,510,000,000	\$202,650,000,000

Ĭ

US Army Corps of Engineers

Risk Management Cent

HERBERT HOOVER DIKE - EVALUATION®

CIZ	Segment	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Solution		Cutoff-Wall	Cutoff-Wall	Cutoff-Wall	Pumped Internal Drainage System
	4	No Action	\$83,100,000	\$83,100,000	\$158,700,000
	5-2	\$1,500,000	\$16,800,000	\$16,800,000	\$30,900,000
	5	No Action	\$41,600,000	\$41,600,000	\$75,200,000
	6	No Action	\$86,400,000	\$86,400,000	\$157,700,000
	7	No Action	\$22,400,000	\$22,400,000	\$41,200,000
	8	\$14,700,000	\$14,700,000	\$14,700,000	\$28,800,000
CIZ B	9	No Action	\$80,200,000	\$28,400,000	\$168,400,000
	12	\$30,000,000	\$63,000,000	\$30,000,000	\$108,200,000
CIZ C	13	\$1,500,000	\$11,700,000	\$1,500,000	\$23,000,000
Totals (ALARP Depth) \$47,700,0		\$47,700,000	\$419,900,000	\$324,900,000	\$792,100,000
Cost increase 15 to 20%					
Totals (I Design	Vinimal Depth)	\$47,700,000	\$361,700,000	\$280,700,000	\$823,784,000

Keys:

CIZ D-G dropped out

48

ĬĸĬ

- \$300M vs \$2.5B
- Met individual and societal risk
- ALARP to account for uncertainty
- Does not meet design standards for exit gradient

Questions?

DUMB AS A BAG OF GEOLOGISTS