AEG/USSD Workshop December 6-8, 2021 Ft. Lauderdale, Florida

Emergency Repairs to Mosul Dam A High Risk Dam on a Karst Foundation

2014 BATTLE FOR WATER RESOURCES OF IRAQ

MOSUL DAM

August 2014

Mosul

Mosul Dam

DEVELOPING STORY ISIS SEIZES IRAQ'S LARGEST DAM Mosul dam is upstream from Tikrit, Baghdad

ISIS control of Tigris and Euphrates River Tabqa dam, Syria Since February 2013

Water as a Weapon Military, financial, infrastructure, irrigation, food supply, drinking water, public health

Dam Safety Risk Communication Behind ISIS Lines

The Phone Call

- Within hours, requests for support came to USACE.
 - Department of State.
 - CJTF.

Airstrikes Support Kurdish Ground Forces

three days, U.S. forces have conducted 35 airstrikes against Islamic State of Iraq and Syria (ISIS or ISIL) terrorists around the Mosul Dam complex.

"In all, we destroyed over 90 targets including a range of vehicles, equipment, and fighting positions," said Pentagon press secretary Rear Adm. John Kirby in statement. "Iraqi forces have cleared the dam and are working to further expand their area of control."

Kurdish Forces Take Back Mosul Dam

SECURITY

KRG Peshmerga

Mosul Operation began Oct. 2016

Syria

>Italian Security Force

KRG Referendum

Iraqi Forces Replace Peshmerga

US Replace Italian Army

BACKGROUND

MOSUL DAM

Ţ

DAM FACTS

- Water Supply
- Irrigation
- Hydropower
- ≻ FRM

- Completed 1985
- 2.2 km long
- Well Designed
- Bad Foundation

- Largest dam in Iraq, 4th largest in Middle East
- > ~18 km upstream of Mosul City
- Storage Capacity 11.1 Billion cubic meters
- 40% of Iraq's water supply
- Inflow from Turkey and Iran
- Largely snow melt reservoir
- Hydropower Plant rated at 750 MW
- <u>4 million population at risk</u>

MOSUL DAM FEATURES

Hydropower Intake

Reservoir -

Bottom Outlet Guard Gate Chamber

Embankment

Service Spillway

Surge Tanks

Bottom Outlet

Hydropower Plant

Name: Mosul Dam River: Tigris River Height: 113 m (371 ft) Length: 3.4 km (2.1 mi) Capacity: 11,100,000 m³ (9,000,000 acre-ft)

Year Complete: 1984 Age: 33 Years Owner: Iraq Ministry of Water Cofferdam No. 6

Spillway Chute

Emergency Spillway & Fuse Plug

Saddle Dam

TYPICAL SECTION

POOL RESTRICTION OF 11 METERS SINCE 2006 National Impacts

2006-2008 Drilling and Grouting Support Effort

\$25 million Contract for training and equipment executed

by Gannett Fleming

Equipment is still onsite

Entire system never used

➢ Required:

Consistent high quality materials logistics chain

- Trained personnel
- New drill rigs
- 100 people/12 drill rigs

MOSUL DAM TASK FORCE

Letter of Agreement (LOA) between US and Gol

USACE Serves Gol as Engineer for Contract

Cost Reimbursement Contract - \$300 million Iraq Funded

➢ 70 people − Military, USACE. and AECOM

Unprecedented Project for US Government

Critical Infrastructure in Conflict

- Emergency response is challenging; add armed conflict.
 - Infrastructure devastated.
 - Borders, air, ground movements complicated/often impossible.
 - Thousands displaced from homes, population resettlement.

Partnership

Security

Planning, Engineering & Construction Management

2 USG Departments

Ì

3 Governments

ا لام أكبر

TREVI

International team

USACE MDTF/Trevi: 16 Nations

Critical infrastructure in conflict

- USACE Requested by Iraqi Government to oversee grouting contract.
- Iraq paid for contract; US paid for oversight; Italy paid for security.
- Contract was required to resume grouting; Trevi.
- Contract required to support USACE oversight; AECOM.
- Incredible coalition formed under difficult circumstances.
 - ISIS to Solicitation 12 Months.
 - Solicitation to Award 9 Months, including 2 major alterations.
 - Mobilization started within a month.
- Talent acquisition and retention.

MOSUL DAM TASK FORCE (MDTF)

•USACE Engineer of Record and Oversee Contract with Trevi for Emergency Drilling and Grouting and Outlet Works Rehab

MDTF consists of USACE, AECOM, and Versar

TREVI CONTRACT SCOPE

Grouting Infrastructure Upgrades

Drilling and Grouting 24/6

Bulkhead Repair

HPUs

Refurbish **5** Cranes

HOUSING COMPLEX

EMERGENCY GATE REPAIR – BOTTOM OUTLETS

MOSUL DAM

GUARD GATE REPAIR

F

• Right BO open for first time since 2013

=

Diving Barge & Bulkheads

Bottom Outlets Inspection February and June 2017

BATHYMETRY AND LASER SCANNING

F

PLUNGE POOL HYDRAULICS MODELING

DAM SAFETY RISK

MOSUL DAM

2016 USACE PFMA/SQRA

24 potential failure modes were identified by the Risk Assessment Team

PFM N1 – Internal Erosion through the Shallow Main Valley Rock Foundation

PFM N2/3 – Internal Erosion through a Deep Flaw in the Main Valley Foundation

PFM N4 – Internal Erosion through the Right Abutment Rock Foundation

PFM N5A – Internal Erosion (Stoping) through the Left Abutment Rock Foundation

PFM N5B – Internal Erosion (Scour) through the Left Abutment Rock Foundation F-Bed

PFM N10 – Internal Erosion through Rock Defects in the Vicinity of the Bottom Outlet Conduit

Downstream Consequences

Internal Erosion along the Bottom Outlet Conduits

Material from

Highest Risk Dam in the World? Comparison to USACE Portfolio

Loss of life and economic risks posed by Mosul Dam are extreme

Even a dam incident could be catastrophic.

Grouting, although critical, does not bring risk to tolerable levels.

GEOLOGY

MOSUL DAM

GEOLOGIC MODEL

GENERAL GEOLOGY AT MOSUL DAM

- Multiple layers of soluble carbonate and sulfate (gypsum and anhydrite) rocks are interbedded in the foundation.
- Varying degrees of dissolution have resulted in a wide range of karst conditions in the foundation.
- Potentially significant voids may have formed in the foundation.
- Some karstic rock units extend to and daylight in the tailrace.
- The foundation has been grouted continuously from the grouting gallery beneath the main embankment since construction to mitigate continuing dissolution of the carbonate and sulfate rocks.

FOUNDATION GEOLOGY

- Pleistocene conglomerate
- F-Bed Limestone

F-Bed

GB3

GB2

GB1

Bauxite

- Lower Fars Group (Lower Marl Series)
 - Foundation is Mostly Marl (calcareous claystone)
 - Multiple thin limestone layers
 - Gypsum Breccias <u>WIDE</u> range of properties. Four thick units in the Lower Fars Group originally composed of gypsum/anhydrite that either remains intact or has partially or completely solutioned out designated GB-3, GB-2, GB-1, and GB-0
- Multiple thinner unnamed gypsum layers Each of the GB layers are separated by marl and limestone

EVAPORITE GEOLOGY

As anhydrite is exposed to water it turns to gypsum and dissolves, leaving voids, cavities and beds of collapse breccia

GYPSUM DISSOLUTION FRONT

GEOLOGISTS FOR SCALE

GEOLOGY One Dam, Two Foundations

GEOLOGY One Dam, Two Foundations

DISTRESS INDICATORS

MOSUL DAM

POTENTIAL DISTRESS FEATURES

 •71+ Potential Distress Features were identified by various means at Mosul Dam

Aerial/Satellite Imagery

Site Assessment and Drilling

Observation and Anecdotal Reporting

INTERFEROMETRIC SYNTHETIC APERTURE RADAR MONITORING

Mosul Dam, Groin Sinkhole Analysis Settlement from 2015 08 22 to 2010 12 07

Sinkhole Cross Section

INTERFEROMETRIC SYNTHETIC APERTURE RADAR MONITORING Three Years of Ground Truth

GYPSUM DISSOLUTION FRONT

NEW INSTRUMENTATION

MOSUL DAM

NEW INSTRUMENTATION

➢ New Core Holes:	75
Core Holes in Gallery:	43
Core Holes on Surface:	32
> New Piezometers:	325
Existing Piezometers to be Automated:	80
> New Inclinometers:	3
> New Crack meters	45
> Weather Station:	1
> Accelerographs:	2
> Pendulums:	3
> Lake and River level sensors and Regulat	ing Dam
> Lake levels displayed in powerhouse a	s well.

pool sensors

GALLERY PIEOMETERS - East Side

Borehole_ID	Gallery Section	Top El (m)	Bottom El (m)	Depth (m)	Bottom Geology	PZ Elevations
17G-22	56/57	290	215	118	GB1	285, 242, 211,
17G-6	60/61	282	165	115	GB2	260, 245, 220, 185
17G-1	64/65	260	145	115	Below GB1	250*, 220, 190, 160
17G-19	66	244	112	135	GB0	230, 195, 165, 116
17G-17	68	242	116	135	GBO	232, 194, 165, 122
17G-21US	69	240	120	120	GB0	233,196,184,165,127
17G-23	70	240	134	106	Top of GB0	196, 165, 136
17G-5	71	237	125	112	GB0	228, 197, 184, 132
17G-20	76/77	233	127	106	GB0	212, 196, 157, 135
17G-8	78	230	130	100	GB0	210, 190, 165, 135
17G-14	80	225	144	81	GB0	215, 198, 144
17G-7	82	225	148	77	GB0	220, 204, 170, 150

242, 211,		Manual 1	(6)
245, 220, 185	•	Manual	
*, 220, 190, 160	•	Proposed Phase 2	•
195, 165, 116		EWS Automation	۲
194, 165, 122	8	Abandoned	•
196,184,165,127		Proposed for Installatio	
165, 136	1000	•	-
197, 184, 132		DS Proposed Borings	*
196, 157, 135	_	US Proposed Borings	
190, 165, 135	Dam	Features	۲
198, 144		Grouting Sections	-
204, 170, 150		Gallery	6
		Embankment	

Conduits

.

Legend

Piezometers

Automation of Existing PZ

Automated

Distress Indicators

٠

0

A

0

Geotechnical Materials 1985 Condition

1011

Nashville District, Geology Map No. LRN.MD.G.PROFILE.V3.P1.20170111 Last Updated 4/8/17

HISTORICAL GROUTING

MOSUL DAM

MoWR HISTORICAL GROUTING

Continuous Grouting for over 30 years

Need for continuous grouting established during original design.

MoWR allowed access to Mosul Dam Library in January 2017.

MoWR provided historical grouting information in June 2017.

MoWR Nipple grouting since 1990
 Flow rate - 50 l/m.

➢ Piezometer readings.

Original Equipment from Original Construction.

HISTORICAL GROUT LINES

GEOLOGY One Dam, Two Foundations

Historical Grouting INSTANCES

Historical takes - total over time

2016 860 Km of grouting length were completed >A total of 81,500 Tons of solids (includes sanded grout) injected

➤Generally, in upper 20 meters takes have decreased with each grouting event

EMERGENCY GROUTING

MOSUL DAM

GROUTING GALLERY INFRASTRUCTURE

Removed

- > 3,000 m electrical cable
- 2,000 m grout lines
- 2,000 m water lines

Relocated

2,000 m dewatering lines

Installed

- 170,000 m electrical cable
- > 15,000 m grout lines
- 3,500 m water lines
- > 3,000 m fiber optic lines
- 2,000 m dewatering pipeline
- Dewatering pumps

GROUTING GALLERY

- New fiber optic system for computerized grout monitoring system.
- New power distribution system.
 New piping system for grout, water, bentonite and cement slurries.
- Robust/redundant communication system.
- New delivery system for sanded grout and gravel mixes.
 Complex sequencing of the work.

DRILLING AND GROUTING

Drilling started in 16 Oct 16. The first liter of grout was injected on 22 Nov 16.

Production grouting was "declared" started on 10 Jan 17.
 T-Grout software monitors and controls all grout delivery equipment with instantaneous feedback.

T - GROUT CONTROL ROOM MAIN MIXING PLANT 1 LEFT ABUTMENT

GROUT MIXES

	MIX A		Mix B			MIX C			
	MIX A03		Mix B04			MIX C01			
	kg	lit	kg/m3	kg	lit	kg/m3	kg	lit	kg/m3
W	1000	1000	900	1000	1000	850	1000	1000	753
С	300	97	270	500	161	425	1000	323	753
В	30	13.0	27.0	30	13.0	25.5	10	4.3	7.5
Additive	2.0	1.43	1.80	2.5	1.79	2.13	1.0	0.71	0.75
			density g/cm3			density g/cm3			density g/cm3
	1332	1111	1.199	1533	1176	1.303	2011	1328	1.515
B/W			3.0%			3.0%			1.0%
C/W			30.0%			50.0%			100.0%
Ad/W			0.20%			0.25%			0.10%
Ad/C			0.67%			0.50%			0.10%

GROUTING CRITERIA

- Utilizing existing grout holesPressure grouting by stages
- Grouting pressures as high as two and half times historical pressures
- Initial boring depths were adjusted based on geology and historic grouting depths
- Refusal pressures based on USBR "rule of thumb"
- Stage refusal: Achieve the effective refusal pressure and flow rate less than 1 l/min and maintained for 2

- R: Refusal pressure Stage Completed
- X% R Rate of Refusal (target) pressure
- P: Measured pressure
- Pa: Target pressure in the stage immediatey above (upstage method only)
- VN = limitless Volume

- NB = V is the cumulative Volume in each Step
- V1 = example = 0.1 m3/m
- V2 = example = 0.2 m3/m (0.1+0.1)
- V3 = example = 0.3 m3/m (0.2+0.1)
- V4 = example = 0.4 m3/m (0.3+0.1)
- V5 = example = 0.8 m3/m (in step C only)
- V6 = example = 2.0 m3/m (in step D only)

DRILLING AND GROUTING Phase 1 – EXPLORATORY GROUTING

- 12 Months, One Row Across 3 km, 1.5 m centers/150 m depth
- Utilizing Existing Holes (Historical Grout Lines)
- T-Grout Computer Monitoring System
- > NO LUGEON CLOSURE CRITERIA
- Higher Pressures, Stage Grouting (5m)
- New Work Force of 700 persons
- Training MoWR Staff

GROUTING PROGRAM – PHASE 2

U/S Row Across 3 km, 3m/1.5 m centers/100 – 150 m depth

> 2000 holes +/-

D&G under 7 tunnels

Additional angle holes U/S and D/S

T Grout Computer Monitoring System

LUGEON CLOSURE CRITERIA
 3-5 Luegon in upper 50 meters
 5-10 Lugeon 50-100 meters

> INTEGRATION OF TRAINED MoWR STAFF

GROUTING SUMMARY

Over 40,00 stages completed/5 meters stages
 5,000 + grout holes
 100-150 tons cement consumption daily

Equipment and Operations

T-Grout computer monitoring system/GIS system
 Mixing Plants/20 drill rigs/20 BGU's (secondary pumps)

>24/6 operations

DRILLING & GROUTING SUMMARY

- ✓ 4,850 holes drilled & grouted
- ✓ 348,652 m length of drilling (216 miles)
- ✓ 39,227 m³ of grout (22,177 tons of solids)
 ✓ More than the last 13 years combined
 ✓ (1.3 Washington Monuments)
 - ✓ 63000 m3 previous 30 years
 ✓ (2 Washington Monuments)

<u>Re-established two continuous grout lines across 2.7-km length of the dam</u>
 <u>Added center line and downstream angled holes at critical locations</u>

GEOLOGY One Dam, Two Foundations

GROUTING RESULTS

Grout_Volume_per_Meter

- 0 to 50 liters/meter
- 50 to 200 liters/ meter
- 200 to 500 liters/ meter
- 500 to 1,000 liters/ meter
 - 1000+ liters/ meter

GEOLOGY One Dam, Two Foundations

2017 Grout Takes By Section

Historical Grouting Instances vs Recent Grout Takes

2017 PSTQ Analysis

Summary Findings

- 1. No preferential seepage paths from U/S to D/S encountered. However, high takes point to potential paths within at left abutment contact.
- 2. Historical grouting effectiveness limited by equipment and technique.
- 3. Historical grouting was generally been successfully in reducing permeability of the first 20m of foundation below the gallery floor
- 4. <u>Multiple high take sections have been identified to</u> guide future grouting.
- 5. <u>Artesian conditions West of Section 79 (Vuggy</u> <u>Limestone) require careful grouting procedures</u>
- 6. F-Bed, Limestone and Marl layers more difficult to grout than gypsum layers.
- 7. <u>Gypsum dissolution front remains a dam safety</u> <u>concern.</u>

BOTTOM OUTLET REPAIR FROM GROUTING

MOSUL DAM

Discovery – West B.O. Tunnel

- Last Inspected: March 31 2017
- 15 Nov 2017: Dewater West Bottom Outlet
- 17 Nov 2017: Discover Deformation in Steel Liner on East Side of Tunnel
- 28m downstream of Guard gate
 - Length=13m
 - Width= 3.9m
 - Height=1.1m

Discovery - East B.O. Tunnel

BOTTOM OUTLET REPAIR

RETURN TO NORMAL OPERATIONS 2019 15 YEAR RECORD POOL

Mosul Dam No Longer on Brink of Catastrophe

FILE - Employees work at strengthening the Merel Dion in nurthern Irsq. April 18, 2000.

Engineer insists Mosul Dam not in danger despite heavy

SHARE ON 👔 🔿 🕲 😋 🗮 ALC TO THOUTON

Tage: Into Magui-Meaul Dars Regulate water origin

RISK ASSESSMENT

MOSUL DAM

RISK ASSESSMENT RESULTS

Multiple 4 to 6 meter voids

RISK ASSESSMENT RESULTS

Normal Pool Elevation: 330; With Intervention

2016

2018

In general, risks fell 2 orders of magnitude. Still very high risk due to downstream population

Why have the risks changed?

- We have MUCH more data to inform our judgment
 - Historic construction data
 - Maintenance data in the intervening years between construction and 2016 (still scarce)
 - Recent grouting data, recent exploration data, piezometer data
- The result is we have a better understanding of the geology from construction and the recent exploration and a better understanding of how the dam was built
- There has been a significant amount of grout (solids) put in the ground that has improved the overall condition of the foundation

DAM SAFETY MODIFICATION STUDY

MOSUL DAM

GROUTING IS NOT A PERMANENT SOLUTION DAM SAFETY MODIFICATION STUDY

Cutoff Wall

DSMS Alternatives

Pool Restriction

New Dam - Badush

Grouting

GROUTING IS NOT A PERMANENT SOLUTION BARRIER WALL \$3-4.5 BILLION

RELATIONSHIPS WERE KEY

Acknowledgements

 COL Michael Farrell, USACE, Commander, Mosul Dam Task Force

Eric Halpin, USACE, Deputy
 Dam and Levee Safety
 Officer

Bill Empson, USACE, Lead Engineer, MDTF

Vanessa Bateman, USACE – Data Management

- USACE/AECOM Reachback Team
- Trevi Group

 \geq

Thank You!

DavePaul, P.E Paul GeoTekEngineering, LLC Paulgeotekeng@comcast.net