EVOLUTION OF THE ROUGH RIVER DAM SAFETY MODIFICATION PROJECT

Will Ailstock, P.E., P.M.P
Project Manager
USACE Louisville District

Steven Shifflett, P.E.
Lead Engineer
USACE Louisville District

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."
PRESENTATION OVERVIEW

• Project Introduction and Background

• 2012 Dam Safety Modification Project Overview
 - Phase I: Grouting Overview
 - Phase 2: 2017 Cutoff Wall Design

• Dam Safety Modification Report (DSMR) Supplement

• 2021 New Outlet Works and Cutoff Wall Project Overview
PROJECT LOCATION

Rough River Dam

Louisville District
CIVIL WORKS
Outlet Works Construction:
Nov. 1955 to Jan. 1958

Dam & Spillway Construction:
May 1957 to Dec. 1958

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dam Type</td>
<td>Earth Fill, partial Inclined Filter</td>
</tr>
<tr>
<td>Maximum Height</td>
<td>130 feet</td>
</tr>
<tr>
<td>Crest Length</td>
<td>1,590 feet</td>
</tr>
<tr>
<td>Outlet Features</td>
<td>~600-ft long, 12-ft x 12-ft Semi-elliptical Concrete Conduit 65-ft wide Rock Spillway</td>
</tr>
</tbody>
</table>

Control Tower

Emergency Spillway

Retreat Channel

Stilling Basin

Downstream Left Abutment

Downstream Embankment Slope

Upstream Embankment Slope

Upstream Left Abutment

Downstream Right Abutment

Right Abutment

Left Abutment

Crest

Conduit

Upstream Right Abutment

Reservoir

Project Office
Haney Limestone (Mgh) – ~50 feet thick

- Bedding is very thin to thick bedded with some laminated beds
- Light gray siliceous limestone with a fine to coarse crystalline texture – Cherty
- Highly karstic with known cavernous features
- Perched water table, piezometers read higher than pool

Beech Creek Limestone (Mgc) - 10-15 feet thick

- Thinly bedded, fine to medium-grained
- Light to medium gray color
- Very karstic with open and clay filled voids
- Large solution features near weathered exposures
GEOLOGIC PROFILES

Dam Profile 7.5 feet Upstream of C/L

Dam Profile 10 feet Downstream of C/L
Overburden Left in Place (alluvium)

OUTLET WORKS CONSTRUCTION

FLOW

12” Thick

18” Thick
UPSTREAM BLANKET AND BEECH CREEK LS

C/L ROCK PROFILE PROJECTED 50’ U/S TO END OF BLANKET DRAIN

Downstream Slope

Upstream Slope

Drainage Wells
12” Diameter
13 Feet O.C.

Alluvium (Left in Place)

2' Blanket

2' Filter Blanket
12' Drainage Wells
13' Centers

2' Filter with Vertical Drains

Sta 20+00

Cl Dam

River

Cross Section View
HISTORIC DAM OPERATIONS – FLOOD CONTROL

KEY ELEVATIONS

Winter (Flood Pool) = 470

Summer pool (Recreational Pool) = 495

Spillway Control Sill = 524

Record Pool = 527.4

PMF = ~555 (under revision)

Stilling Basin Floor = 427

BCLS = 410 - 424

U/S Instruments Decreased

D/S Instruments Increased

Blanket and drainage wells transmit full reservoir pressure into the foundation D/S – very high gradients at elevated pools.
IMPACTS FROM THE 2011 RECORD POOL

Dam and Reservoir

Stilling Basin Discharge

2011 Stilling Basin Dewatering

Artesian Flow Through Weep Hole
2012 STILLING BASIN REPAIRS

2012 Caisson Recovered Rock Plug

Caisson Excavation – Observed High Flow

Dewatering Influence on Piezometers

Solutioned BCLS Caisson Excavation

Slurry Wall

Stilling Basin

Beech Creek Lst PZs

Soil/Rock Interface PZs

PZ-68 (-7.1')

PZ-42 (-6.0')

PZ-41 (-0.8')

PZ-40 (-2.0')

PZ-24 (-0.3')

PZ-36 (-1.1')
PRESENTATION OVERVIEW

• Project Introduction and Background

• 2012 Dam Safety Modification Project Overview
 - Phase I: Grouting Overview
 - Phase 2: 2017 Cutoff Wall Design

• Dam Safety Modification Report (DSMR) Supplement

• 2021 New Outlet Works and Cutoff Wall Project Overview

2012 Dam Safety Modification Report (DSMR) Overview

- Classified as Dam Safety Action Classification (DSAC) 2 due to 5 internal erosion related failure modes.

- The approved plan for mitigation required a multi-phased approach to include Phase I and Phase II Projects:

Phase I:
- An upstream traffic platform;
- Enhanced instrumentation;
- A full-length exploratory grout line;
- Evaluation of the Phase I results to determine if a cutoff wall was needed;

Phase II:
- Two grout lines for slurry control;
- A full-length cutoff wall placed around the existing conduit;
- Grouting from within the conduit;
- A downstream filter around the conduit;
PHASE 1A HWY 79 RELOCATION - 2014
ENHANCED INSTRUMENTATION

- ADAS System Installed – 2013
- Fully Grouted Vibrating Wire (VW) Transducers – 2014/2015
- 111 Automated including 58 VW
- 11 Manual Read PZ’s
- 47 Movement Monuments and Carriage Bolts
Objective:
1) Explore and evaluate subsurface conditions and evaluate the need for a future cutoff wall.

2) Determine the extents of additional grouting, if needed.
PHASE IB EXPLORATORY GROUTING (BASE CONTRACT)

Base Contract Alignment

Upstream Line: 7.5 ft U/S

Downstream Line: 10 ft D/S

Grout Plant

U/S Grout Line

Base Contract Alignment
PHASE IB EXPLORATORY DRILLING AND GROUTING

Technical Approach - Base Contract
1) The dam was broken up into zones based on the bedrock in contact with the embankment.
2) Each zone was required to be fully isolated from the embankment before pressure grouting could proceed.
3) Required the use of an instrumented packer for all grouting and water pressure testing.
GROUTING SPECIFICATION REQUIREMENTS

- Mandatory downstage grouting in rock required if drill fluid return was lost or hole communication occurred.
- Concurrent drilling and grouting operations were not allowed within 80 feet of adjacent holes.
- Used a balanced, stable grout mix.
- Refusal for gravity grout stages was 0 flow for 1 hour. Refusal for pressure grout stages was 1 gal/min held for 10 min.
- The Contractor was required to perform optical and acoustic televiewer (OATV) surveys for primary boreholes to verify rock contacts and the condition of the bedrock.
- The project required an automated data management system to provide the real time status for grouting progress and any noted instrumentation reactions.
GROUT MIXES

- Cement-Bentonite High Mobility Grout Mixes
 - All are balanced, stabilized grouts, <1% bleed
 - E mix is a sanded mix
 - W/C content varies from 0.7 – 1.5
 - Specific Gravity from 1.4-1.7
 - Marsh Funnel Times
 - A mix – 35-40
 - B mix – 40-55
 - C mix – 55-70
 - D mix >70
 - Flow cone for E mix >12
 - Use a neat A mix for barrier bag inflation
DRILLING/GROUTING PROCESS - GRAVITY ZONE

Work conformed to USACE EM 1110-2-3506 Grouting Technology and ER 1110 -1-1807 Drilling and Earth Embankment Dams and Levees;

Sequence for each hole was:

a) Advance borehole to 4’ rock socket with resonant sonic drilling;

b) Install MPSP Pipe with barrier bag;

c) Inflate barrier bag, stage backfill the annular space of standpipe;

d) Grout the 4’ rock socket zone at gravity pressure;

e) Grout the upper 15’ gravity stage.

f) Complete gravity stage for the entire zone before deeper pressure grouting can commence.

Instrumented packers were required for all water pressure testing and grouting
EMBANKMENT DRILLING

- Utilized 7X6 drilling method (6” sample, 7” override casing).
- Continuous soil sampling and logging.
- Steel casing is socketed a minimum of 4 feet into rock.
- Inner Casing is removed, PVC Multiple Port Sleeve Pipe (MPSP) installed in the borehole.
- All on-site drilling conformed to USACE Engineering Regulation (ER) 1110-1-1807, Drilling in Earth Embankment Dams and Levees.
INSTALLATION OF PROTECTIVE BARRIER BAG

- A Multiple Port Sleeve Pipe (MPSP) installed in the hole with a barrier bag 1 ft. above the top of rock.
- Outer casing raised above soil/rock interface.
- Dual Packer setup is lowered into the hole and inflated.
- Barrier bag is inflated using neat grout.
- Barrier bag isolates the casing annulus from the soil/rock interface.
- Dual packer is raised to the next port and inflated.
- The casing annulus is grouted through the port.
- Dual packer is then deflated and removed.
- The remaining steel casing is removed, and the hole topped off.
SOCKET INTERFACE GROUTING

- Single instrumented packer is lowered to 1 foot above TOR and inflated.
- Soil-Rock interface is then grouted through the bottom port.
- Packer is deflated and removed.
- The casing is flushed with water.
- Drill old grout and rock using a core drill.
- Single instrumented packer lowered to 1 foot below TOR and inflated.
- 15’ Gravity Zone grouted through a port on the packer.
- Packer is deflated and removed.
- The casing is flushed with water inside the casing.
- Each individual zone required full gravity grout completion before pressure grouting was permitted.
BCLS UNFILTERED EXIT INTO THE STILLING BASIN
BCLS VOIDS AND CLAY INFILL

Top of Rock

2-3’ Grout

Beech Creek LS

Clay Filled Solution Feature

Grout Ribbons

Beech Creek LS

Bottom

Match Line

Karst - Interpretation
Encountered Clay Seams

Impervious Fill

Outlet Conduit

No Grouting

22+00

22+50

No Grouting Was Conducted Below the Conduit
COMMUNICATION BELOW THE CONDUIT
2016 SQRA

- Purpose: Evaluation and confirmation of the original DSMR risk assumptions.
 - Recommended Approval of Cutoff Wall.
 - Recommended Installation of additional instruments near the conduit.

- Received approval from ASA(CW) in February 2017 to proceed with design and budgeting for the cutoff wall construction.

- LRL Modified Phase IB to complete both grout lines for slurry control in advance of cutoff wall.
 - Serves as an Interim Risk Reduction Measure (IRRM) until cutoff wall is installed.
PHASE IB EXPLORATORY GROUTING (MODIFICATION)

Justification:
Karst connectivity below the dam was confirmed via grouting. Exploratory grouting was modified for slurry control in preparation of cutoff wall construction.
OVERVIEW OF PHASE 1 MODIFICATIONS

PHASE IB GROUTING SUMMARY

The project successfully installed a total of 308 production grout holes and 20 verification holes.

- 32,422 linear feet of overburden soil drilling;
- 7,477 linear feet rock coring;
- 26,058 linear feet percussion rock drilling;
- 212,763 gallons of grout;

• The grouting program was considered successful as a model state of the art grouting program.

• The results of Phase IB grouting were applied to the future cutoff wall design.
POST GROUTING RISK ASSESSMENT

Key Points

• Head loss improved across many zones of the dam;

• Grouting did not repair the flaws that allow internal erosion to initiate;

• Pathways will re-establish over time subject to the frequency of dam loading;

• A cutoff wall is still required for permanent risk reduction;
PRESENTATION OVERVIEW

• Project Introduction and Background

• **2012 Dam Safety Modification Project Overview**
 - Phase I: Grouting Overview
 - Phase 2: 2017 Cutoff Wall Design

• Dam Safety Modification Report (DSMR) Supplement

• 2021 New Outlet Works and Cutoff Wall Project Overview
2012 DSMR - CUTOFF WALL DESIGN

CHALLENGES:
1) CUTOFF WALL GEOMETRY
2) HOW TO INSTALL A SEEPAGE BARRIER AT THE CONDUIT, CRITICAL AREA A
2017 CUTOFF WALL GEOMETRY

Critical Area B1

Closure (13+50 – 15+50)

General Test Section (15+50 – 17+50)

Low Stress Zone

Critical Area B2

Critical Area B3

Critical Area B4

Critical Area A
2012 DSMR RECOMMENDATIONS AT CRITICAL AREA A

- **Option One:**
 - Drill Holes,
 - Wash soil areas,
 - Grout area

- **Option Two:**
 - Excavate slot around conduit
 - Clean conduit
 - Place panel around conduit

- **Option Three:**
 - Drill Holes,
 - Wash soil areas,
 - Grout area

Profile:
- Phase 1 Conduit
- Invert Grouting Detail

Notes:
- Not to scale
- Grouting Below Conduit

US Army Corps of Engineers
USACE AND A/E RECOMMENDATIONS AT CRITICAL AREA A

- Alt. 1 – Grouting Only
- Alt. 2 – Incomplete Cutoff Wall and Grouting
- Alt. 3 – Secant Pile Wall Through Conduit
- Alt. 4 – Jet Grouting Around the Conduit
- Alt. 5 – Secant Along Perimeter and Grouting From Conduit
- Alt. 6 – Line Grouting Through Conduit
- Alt. 7 – Hydromill Panel Through Conduit
- Alt. 8 – Construct New Conduit and Extend Cutoff Wall Through Abandoned Existing Conduit
CONDUIT LINING WITH CUTOFF WALL CUT

- Cutoff wall would cut through the conduit at the centerline.
- Structural lining of existing conduit (steel and concrete).
- Estimated construction time was 1 year and 40% reduction in release capacity.
- Would likely result in uncontrolled spillway flow.
- Greatly increased breach and non-breach risks.
- Significant construction risks.

Pine Creek Dam
USACE elected to go with Option 2 from the DSMR.

- A panel excavated above and around the conduit.
- The soils around the conduit would be cleaned and the panel filled with concrete.
CRITICAL AREA A TREATMENT

BEECH CREEK LIMESTONE
ELWREN SHALE

Monolith 12
Monolith 11

B/D/S - Battered Holes (20 degrees Upstream) - 18 Holes Total
B/D/S - Battered Holes (20 Degrees Downstream) - 24 Holes Total
RA - Radial Angle Grout Holes (10, 20, and 40 Degrees Left and Right) - 24 Holes 1
Early in the design, a 3-D finite element analysis was performed to evaluate the existing conduit design and future loads.

Results indicated the conduit was overstressed in its existing condition.

- No rebar could be cut within 2 ft. of the sidewalls.
- A majority of the rebar needed to be located and avoided in the floor area.

The PDT analyzed how the conduit would be loaded and unloaded during excavation and concrete placement to prevent overstressing the conduit.

- Conduit bracing greatly increased.
- Excavation sequences prescribed to not overload conduit.

Limits placed on concrete lift heights with joint treatment for the cutoff wall panel.
UNACCEPTABLE CONSTRUCTION RISK

• The final SAR review indicated unacceptable structural concerns remained.

• Considerations for how long term increases in the hydrostatic loading upstream of the cutoff wall were factored into the design.

• Recent inclinometer measurements monitoring a cutoff wall at another project indicated measurable ground displacements during the cutoff wall installation.
 - The condition would result in eccentric loading on the conduit and potentially increase the stress regime beyond predicted limits.

• An incident occurred where grouting pressure near a steel lined conduit caused significant damage to a conduit - Limited ability to repair conduit.
USACE concluded that construction risk for the Phase 2 project was not acceptable because:

• High likelihood of structural damage to the conduit;
• Increased potential for internal erosion into the conduit;
• Conduit is the only means of controlled flow conveyance;
• Increased overtopping risk in the event construction difficulties limited reservoir releases for a prolonged period;

USACE determined the DSMR Plan to saddle the cutoff wall around the conduit was incomplete and additional design measures were required.
PRESENTATION OVERVIEW

• Project Introduction and Background

• 2012 Dam Safety Modification Project Overview
 - Phase I: Grouting Overview
 - Phase 2: 2017 Cutoff Wall Design

• Dam Safety Modification Report (DSMR) Supplement

• 2021 New Outlet Works and Cutoff Wall Project Overview
It was decided not to advertise the Phase 2 cutoff wall as designed.

Previously approved Tentatively Selected Plan (TSP) considered incomplete.
- *Slurry control grouting, a full-length cutoff wall placed around the existing conduit, grouting from within the conduit, and a D/S filter.*

Supplemental Dam Safety Modification Study (DSMS) was required due modified TSP and increase in cost.

“Do the best you can until you know better. Then when you know better, do better.” – Maya Angelou
INITIATION OF THE DSMR SUPPLEMENT

• Cutoff wall still needed to achieve risk reduction.

• Re-Initiation of the Planning Phase – Identification of objectives, constraints and evaluation criteria.

Evaluation Criteria
• Technical Feasibility
• Construction Risk
• Maintenance sustainability
• Environmental Impacts
• Real Estate
• Project First Cost
• O&M Cost
• Impacts to cutoff wall construction
DESIGN MEASURES

• PDT prepared concept level designs for four measures:
 - Conduit Lining with cutoff wall through conduit
 - Spillway outlet works
 - Right abutment tunnel/outlet works
 - Left abutment tunnel/outlet works

• PDT prepared multiple versions of each concept

• Concept designs were presented to Constructability Evaluation team for review (June 2018).

• Risk Analysis of recommend measure (July 2018).
CONSTRUCTABILITY EVALUATION (JUNE 2018)

• Purpose – Review conceptual designs, discuss design optimizations, discuss constructability/performance issues, and make a recommendation for a design measure to complete the TSP.

• Participants included:
 • PDT – Geology, Geotechnical, Structural, Civil, Water Management, Construction, Planning, Cost
 • Operations
 • DSMMCX – H&H, Planning, Construction, Geology, Cost
 • RMC – Geotech/Geology, Construction, Geology
 • LRD

• Process
 • Site Visit
 • Measure evaluation and optimization
 • Comparison and recommendation

• Outcome
 • Vertical team concurrence for a new outlet works through left abutment
ALTERNATIVE EVALUATION

• Revised structural alternative
 • Slurry control grouting, *new left abutment outlet works*, a full-length cutoff wall placed around the existing conduit, grouting from within the conduit, and a D/S filter.

• Alternative comparison:
 • Do nothing (FWAC)
 • Remove Dam
 • Remove and Replace Dam
 • Structural alternative

• Project Cost, Performance Risk, and Benefit Cost analysis updated for all alternatives.

• Presented to DSOG in Nov 2018
TSP ENDORSEMENT AND DSAC CHANGE

• On 6 November 2018, the Modified TSP was presented to and endorsed by DSOG.

• Recommendation to proceed with design and Supplemental DSMR for a new left abutment outlet works and full-length cutoff wall severing the existing conduit.

• DSOG voted to lower the project risk classification from DSAC 2 to DSAC 3 based on the 2017 Post Grouting Risk Assessment. The DSAC Change MFR was received on 29 March 2019.

• The DSMR Supplement was approved by USACE HQ DSO on 22 February 2021 and endorsed by ASA(CW) on 20 Oct 2021.

• The project is currently awaiting appropriation.

• From the time of award, it will take approximately 5 years to complete the repairs at Critical Area A.
PRESENTATION OVERVIEW

• Project Introduction and Background

• 2012 Dam Safety Modification Project Overview
 - Phase I: Grouting Overview
 - Phase 2: 2017 Cutoff Wall Design

• Dam Safety Modification Report (DSMR) Supplement

• 2021 New Outlet Works and Cutoff Wall Project Overview
PHASE II: NEW OUTLET WORKS AND CUTOFF WALL

- New Outlet Tunnel
- New Stilling Basin
- New Retreat Channel
- Abandon Existing Stilling Basin and Tailwater
- New Cutoff Wall
- New Control Tower
- New Approach Channel
- Dam
- Reservoir
- Abandon Existing Control Tower and Conduit
Key Features of Work

- Upland Disposal Area
- Spoil Placement
- Sheet Pile Cofferdam
- Stilling Basin and Retreat Channel Stripping & Excavation
- Tunnel Excavation
- Work Platform Construction
- Cutoff Wall Installation
- Control Tower and Approach Channel Stripping & Excavation
- Stripping & Construction of Service Bridge Abutment
- Cofferdam Construction
- Expected Underwater Excavation
- Dredged Spoils

Staging Area
Photos of Physical Model construction at ERDC:

1. Reservoir, Approach Channel, and Intake Tower.
2. Intake Tower leading to Curved Conduit.
3. Retreat Channel and Stilling Basin, looking upstream.
• Upstream portal constructed integral to control tower as the transition.

• Maximum upstream portal width is 24.5 feet.

• Temporary support can be cast integral to tower walls.
TUNNEL LINER DESIGN

- Cast-in-place, reinforced concrete, with Class B finish.
- 20’ monoliths. Monoliths within the curve are 20’ with a mitered angle every 10’.
- 14’ ID, 1’ min liner thickness.
- Non-metallic water stops at contraction joints.

960’ long with 300’ radius
TUNNEL PROTOTYPE: YATESVILLE DAM

- Roadheader used at Yatesville Dam in a sandstone bedrock.
- Tunnel has radius similar to proposed at Rough River.
- Rough River will require a large road header.
STILLING BASIN AND APRON DESIGN

- USACE Type III basin, 115’ long x 46’ wide.
 - Single row of baffle blocks, dentated end sill
 - Designed using ERDC Physical Model
- Cast-in-place reinforced concrete.
- 5 monolithic sections of varying length.
- Embedded upstream stop log slots and sill.
- Sloped end sill provides debris sweep out.
- Extended sill slab provides space for dewatering systems at normal tailwater elevations.
- Concrete apron lining retreat channel at El 429.3 extending from end sill to Sta 24+10.
CUTOFF WALL PROFILE

Critical Area B1

Closure (13+50 – 15+50) General Test Section (15+50 – 17+50)

Critical Area B2

Critical Area B3

Critical Area B4

Critical Area A
ABANDONMENT OF EXISTING CONDUIT – UPSTREAM SEAL TO MON. 13

Proposed Cutoff Wall Location

Bulkhead at Monolith 13

KEY COMPONENTS OF PLAN

- Use series of slotted grout pipe and valves to ensure complete grouting.
- Use balanced, stable, flowable material.
ABANDONMENT OF EXISTING CONDUIT – DOWNSTREAM FROM MON. 13

Proposed Cutoff Wall Location

Filter

KEY COMPONENTS OF PLAN

– Use series of slotted grout pipe and valves to ensure complete grouting.
– Use balanced, stable, flowable material.
– Pumped into the outlet conduit from the stilling basin upstream.
1) Grout Critical Area B3 Before Abandonment.
2) Grout Through the Existing Conduit at Critical Area A.
CUTOFF WALL AT CRITICAL AREA A

CUTOFF WALL PANEL THROUGH EXISTING CONDUIT

– Completely sever the existing conduit to construct a continuous cut-off wall.
 • 2-foot continuous cut-off 25-30’ long Panel/Secant Elements.

– Means and methods for conduit demolition submitted with RFP for consideration.

– The existing outlet works to be fully abandoned.
SUMMARY

• Field Data and Lessons Learned used to refine design approach.

• Results of Phase 1 Grouting were utilized for risk-informed decision making.

• Evaluation of Construction risk led to postponement of cutoff wall solicitation.

• Strategic coordination with Vertical Team led to efficient concurrence on revised approach.

• The Supplemental DSMR and design are complete and the project is authorized.
CONCLUSIONS

• Vertical Team Coordination/Communication

• Incorporation of Lessons Learned

• Strong technical personnel in Construction and Engineering

• Proactive interpretation and evaluation of Construction Data

• The right decisions are rarely the easy decisions.
QUESTIONS ???