

Case Histories

Building and Using 3D Models to Plan and Execute Site Characterizations

J. Hawkins Gagnon, PG, LEG Nicole Mathis, El Frederic Snider, PG

Build Better. Together.

Presentation Objectives

Case Histories will show:

- 1. Existing projects can be totally recharacterized with existing information.
- 2. Creation of 3D models allows us to do a much better job of designing geotechnical investigations so that we are answering the right questions.
- 3. Creation of 3D model leads to project discovery

Our Approach to Site Characterization

Start with Construction History

 Review more than the typical plan view, section, profile, and geology descriptions

View ALL available data in one space

- Spend more resources upfront (time and money) to understanding the story
- Data is displayed, limit interpretations
- Sources are well documented

Communication

- Design Team, Owners, Stakeholders all on the same page from the beginning
- Easily shared, user-friendly, visualization enhancing
 3D PDF Models

The result is a significantly higher likelihood of **confidence** in our geotechnical investigations, risk analyses, instrumentation, and remedial designs.

Case History #1 Somewhere West of the Mississippi

350' High Double Curvature Thin Arch
Underground powerhouse
Online in late-1960s
Massive 500-million-year-old limestone and dolomite, cliffs 500+ ft high

Case History #1 – Where we started...

Case History #1 – Where we started...

3D Model?! Where do we even begin?

- Let the data tell the story
- Dive into construction records and compile ALL existing geotechnical data
 - Construction photos
 - Construction drawings
 - Boring logs
 - Water test results
 - Geologic maps
 - Point cloud
 - Site coverage

3D Model

Laser Scanning to Measure Discontinuities

Mapping Discontinuities – Planes

Mapping Discontinuities – Traces

- There are many traces with no planes
- There are many planes with no traces
- Traces and planes both saved for

3D Model

Stratigraphic Analysis

South Forebay Wall

North Forebay Wall

Forebay

Left Spillway

Right Abutment

Case History #1 – Lessons Learned

- Site totally recharacterized based on existing data
- Complex stratigraphy and fracturing BUT the site is one contiguous block!
- "Possible Major Faults" appear to be through-going joint sets with little displacement
 - Form large potentially removable blocks
- Re-understanding of original geologic map stratigraphy
 - collapse breccia

Case History #1 – Lessons Learned

Understanding of Site Geology Changed Completely

- Resulted in analyses of potentially removable blocks on the abutments
- Emergency stabilization of bridge pier supported by a rock block with low Factor of Safety

3D Model was Used for a Variety of Tasks

- Rock block stabilization support
- Risk address PFMs in PFMA and SQRA
 - Reclassification of PFMs
 - Increased confidence
- Targeted ground-truthing
- Reevaluation of instrumentation program

Embankments on either side of a central powerhouse

Maximum embankment height of about 160 ft

Output of ~800 MW

Built in late-1960s

Glaciofluvial deposits on a major river

Case History #2 – It's Complicated

Periodic Risk Assessment performed, and conclusion was that there is a lot of uncertainty regarding project risk.

3D Modeling Objectives:

- Inform filter compatibility analysis
- Support planning of a geotechnical investigation to inform:
 - seismic stability
 - internal erosion, and
 - other risk-driving PFMs.

Case History #2 – Using the 3D Model as our Guide

- Does the current site understanding make sense based on available data?
- Where are our existing borings? In-situ testing?
- What is missing?
- Where is the data we need?
 What are the best ways to get it?
- Is there liquefiable material in the foundation? Where are those materials?

Case History #2 – Planning an Investigation to Address Uncertainty

- Internal Erosion
 - a) Material properties
 - a) Characterize geometry of zone contacts
 - b) Changes over time
 - c) Gradients

Case History #2 – Planning an Investigation to Address Uncertainty

- a) penetration resistance data
- b) material properties

What do you do when your materials are gravel or larger?

Underwater-Placed Fill

Case History #2 – Complex Investigation

Targeted Investigation with Multiple Techniques

Drilling

- Sonic samples for gradation testing (8-inch diameter in certain zones)
- Becker Drilling penetration resistance
- Mud Rotary SPT values and site-specific correlations
 - Blows per-inch
 - Shear wave velocity in embankment
- Diamond Rotary Coring –
 foundation shear wave velocities

Geophysics

Suspension logging – shear wave velocity

Case History #2 – Lessons Learned

Understanding construction methods is critical

Past performance is key

Data Quality Must be Assessed

Keep the end goal in mind

CONCLUSIONS

The process of building 3D models leads to a more holistic understanding of projects.

Good models result in higher likelihood of success

Existing records are critical for site characterization

Hawkins Gagnon, PG, LEG jgagnon@schnabel-eng.com

